Poster #120

Is alcohol neuroprotective in methamphetamine-associated neuropsychological impairment?

Rowan Saloner¹², Emily W. Paolillo¹², Anya Umlauf¹ David J. Moore¹, Robert K. Heaton¹, Igor Grant¹, Mariana Cherner¹ & the TMARC Group¹

¹Department of Psychiatry, University of California, San Diego, HIV Neurobehavioral Research Program, San Diego, California ²San Diego State/University of California, San Diego, Joint Doctoral Program in Clinical Psychology, San Diego, California

TRANSLATIONAL METHAMPHETAMINE AIDS RESEARCH CENTER

Rowan Saloner | 9500 Gilman Drive | La Jolla, CA 92093 | rsaloner@ucsd.edu

Background & Significance

- Methamphetamine (MA) misuse is associated with neurotoxicity and neurocognitive deficits.
- MA use parameters (e.g., cumulative lifetime exposure) generally fail to predict MA-related brain dysfunction (e.g., neurocognitive impairment)¹.
- Alcohol is the most commonly used secondary substance among primary MA users².
- Given that MA and alcohol independently disrupt overlapping neurobiological mechanisms, one may expect a synergistic neurotoxic effect of combined MA and alcohol misuse.

Table 2. Study sample characteristics

Vastable	MA	MAI	
Mean (SD) Median [IOR] or N (%)	(n=114)	(n=87)	a value
Demographics	(1 114)	(1 0/)	p talue
Age (vears)	37.2 (12.21)	38.6 (10.79)	.40
Education (years)	14.1 (2.08)	12.6 (2.20)	<.0001
WRAT-Reading	105.4 (10.14)	99.1 (9.27)	<.0001
Sex (male)	99 (86.8%)	81 (93.1%)	.14
Ethnicity (non-Hispanic White)	73 (64.0%)	59 (67.8%)	.58
Depressive Symptoms			
Lifetime MDD	24 (21.1%)	34 (39.1%)	<.01
Current MDD	3 (2.6%)	8 (9.2%)	.06
BDI-II	2 [0-6]	11 [4-20]	<.001
Alcohol Use			
Lifetime Alcohol Dependence	10 (8.8%)	32 (36.8%)	<.001
Lifetime drinking days	663 [127-1750]	1453 [470-3544]	<.001
Lifetime drinks consumed	2077 [271-5902]	8184 [2122-22554]	<.001
Density (average drinks per drinking day)	3.7 (2.53)	6.1 (4.00)	<.001
Days since last use	6.5 [2-99]	116 [14-411]	<.001
Age of first use	17.8 (4.29)	15.0 (4.63)	<.001
Cannabis Use			
Lifetime Cannabis Dependence	4 (3.5%)	20 (23.0%)	<.001
Current Cannabis Dependence	1 (0.9%)	1 (1.2%)	1.000
Lifetime days of use	31 [0-395]	1261 [156-4176]	<.001
Lifetime grams consumed	5 [0-65.3]	496 [37.5-2465]	<.001
Density (average grams per day of use)	0.07 [0-0.25]	0.50 [0.19-2.07]	<.001
Days since last use	274 [12.5-2739]	365 [76-2739]	.48
Age of first use	16.0 (3.75)	14.1 (3.76)	<.001
Other Lifetime Substance Dependence			1.201
Cocaine	0 (0%)	14 (16.1%)	<.001
Hallucinogen	0 (0%)	2 (2.3%)	.19
Opioid	0 (0%)	6 (6.9%)	<.01
Inhalant	0 (0%)	1 (1.2%)	.46
Sedative	0 (0%)	0 (0%)	-
PCP	0 (0%)	0 (0%)	

Figures 2 & 3. Alcohol moderates the effect of MA status on global cognition

Aim/Hypothesis

<u>Aim</u>

To examine the relationships between an estimate of lifetime alcohol consumption and neurocognitive functioning among MA-dependent (MA+) and MA-nonusing (MA-) individuals.

<u>Hypothesis</u>

Greater reported lifetime alcohol consumption will contribute to poorer neurocognitive functioning regardless of MA-dependence, but will exhibit significantly larger effects among MA+ compared to MApersons.

Methods

<u>Participants</u>

87 MA+ and 117 MA- adults underwent neuropsychological and substance use assessments. MA+- individuals met DSM-IV criteria for lifetime MA-dependence, with use within the last 18 months. 14 MAindividuals reported no habitual MA use (<10 lifetime total days of use). Exclusion criteria included other substance dependence, except alcohol or cannabis, within 5 years, or abuse within the past 12 months. Abbreviations: WRAT=Wide Range Achievement Test; MDD=major depressive disorder. Note. Alcohol dependence greater than 12 months ago; other drug dependence greater than 5 years ago; cannabis may be recent.

Figure 1. Neurocognitive Performance by MA status

- Alcohol use density negatively related to global functioning (b= 0.40, p=.046) among MA- persons, but did not significantly predict any domain T-scores among MA+ participants.
- Greater alcohol consumption significantly increased the likelihood of global (OR=1.21) and verbal fluency impairment (OR=1.15) in

Substance Use Assessment

A timeline follow-back interview assessed alcohol MA, and cannabis use parameters: age of first use, days since last use, estimated lifetime consumption: grams (MA and cannabis) and drinks (alcohol), estimated lifetime days of use, and a density metric capturing average grams per day of use (MA and cannabis) and average drinks per drinking day (alcohol). Alcohol density, conceptualized as a proxy for typical level of alcohol use throughout the lifetime, was selected as a predictor variable in analyses.

Neurocognitive Testing

Seven ability domains were assessed: verbal fluency, executive function, processing speed, learning, recall, working memory, and motor skills. Demographically-adjusted T-scores and dichotomous impaired/unimpaired (<-1 SD cut-point) outcome variables were computed for global and domain-specific performance².

Statistical Analysis

Separate regression models predicting global and domain-specific Tscores (linear) and impairment (logistic) as a function of alcohol density, MA status, and their interaction. Covariates included Tables 3 & 4. Coefficients for linear (beta) and logistic (odds ratio) models

	Outcome Variables: Neurocognitive Domain T Scores							
	Global	Verbal	Executive	Processing	Learning	Delayed	Working	Motor
Predictors		Fluency	Function	Speed		Recall	Memory	Skills
Alcohol use density	-0.40**	-0.60*	-0.52*	-0.49*	-0.24	-0.06	-0.01	-0.53
MA ^a	-1.23	-1.56	-1.46	-0.29	-2.63*	0.33	-2.91*	-0.66
Alcohol use density*MA ^a	0.50**	0.74*	0.65*	0.57	0.38	0.12	0.32	0.34
Days since last alcohol use	0.00	0.00	0.00	0.00	-0.00	-0.00	-0.00	0.00
Cannabis use density	-0.42	0.48	-0.82	-0.86	0.05	-0.59	-0.15	-0.62
WRAT	0.07*	0.03	0.14**	0.03	0.19**	0.06	0.14**	-0.02
BDI-II	-0.04	-0.00	-0.05	-0.08	0.01	-0.05	0.02	-0.10
Lifetime MDD	1.10	0.53	0.77	1.15	2.53*	1.70	0.66	-0.26

	Outcome Variables: Neurocognitive Domain Impairment Rates								
	Global	Verbal	Executive	Processing	Learning	Delayed	Working	Motor	
Predictors		Fluency	Function	Speed		Recall	Memory	Skills	
Alcohol use density	1.19*	1.15	1.14	0.91	1.15	1.16*	0.98	0.98	
MA ^a	1.73	1.69	1.03	2.38	1.83	1.20	1.57	1.26	
Alcohol use density*MAb	0.70**	0.77**	0.88	0.97	0.80*	0.86	0.89	1.06	
Days since last alcohol use	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	

MA- persons, but significantly decreased the likelihood of global (OR=0.83) and verbal fluency impairment (OR=0.88) in MA+ individuals.

Conclusions

- Unexpectedly, alcohol use density reduced risk of global impairment in the MA+ group.
- Given the known neurotoxic and neurobehavioral consequences of heavy alcohol use, these results must be interpreted with caution.
- Our results are consistent with prior research demonstrating that singly addicted stimulant abusers exhibit poorer neurocognitive performance than poly-abusers of stimulants and alcohol³.
- Our findings are supported by prior animal and human studies identifying neurobiological mechanisms by which alcohol may attenuate the vasoconstriction and brain thermotoxicity associated with stimulant use (i.e., vasodilation, heat dissipation).
- Examination of neurophysiologic mechanisms (e.g., neurovascular) underlying alcohol use in MA-dependence are warranted to elucidate whether alcohol confers a degree of neuroprotection in MA-dependence.

performance on the Reading subtest of the Wide Range Achievement

(version 3 or 4; WRAT), days since last alcohol use, current

depressive symptoms (BDI-II), lifetime major depressive disorder, and

cannabis use density.

1.00 0.85 Cannabis use density 0.78 0.87 0.69 1.07 0.65 1.14 1.00 0.96** 0.93*** 0.97 0.98 1.00 0.94*** 1.01 WRAT 1.03 1.00 1.02 **BDI-II** 1.02 1.03 1.01 1.02 0.98 0.85 0.50 2.13 Lifetime MDD 0.54 0.55 0.53 0.66 0.74 ^aMA+ compared to MA-^bALC Density*MA interaction values represent ratios of odds ratios *p<0.10; **p<0.05; ***p<0.01

References

 Cherner, M., Suarez, P., Casey, C., Deiss, R., Letendre, S., Marcotte, T., . . . Group, H. (2010). Methamphetamine use parameters do not predict neuropsychological impairment in currently abstinent dependent adults. *Drug Alcohol Depend*, *106*(2-3), 154-163. doi:10.1016/j.drugalcdep.2009.08.010

Blackstone, K., Moore, D. J., Franklin, D. R., Clifford, D. B., Collier, A. C., Marra, C. M., . . . Heaton, R. K. (2012). Defining neurocognitive impairment in HIV: deficit scores versus clinical ratings. *Clin Neuropsychol, 26*(6), 894-908. doi:10.1080/13854046.2012.694479
Robinson, J.E., Heaton, R.K., & O'Malley, S.S. (1999). Neuropsychological functioning in cocaine abusers with and without alcohol dependence . *J Int Neuropsychol Soc,* 5(1), 10-19.

This work was supported by NIDA awards P50DA026306 and P01DA012065. Stipend support to RS is funded by NIAAA award T32AA013525.

80th Annual Scientific Meeting of The College on Problems of Drug Dependence | June 9-11, 2018 | San Diego, CA